

Review of Methods for Assessing the Remaining Strength of Corroded Pipe

PHMSA Public Meeting, Anomaly Assessment and Repair Workshop October 22 2008

Introductions

- Vinod Chauhan Principal Consultant and Principal Investigator
- Clive Ward Principal Consultant, Integrity Management
- Bryan Lethcoe Director, Integrity Management

Background

- Advantica led a group sponsored project in the late 1990's to develop an updated method for assessing the remaining strength of corroded pipe
- Funded by 8 operators and 2 regulators
- A large database of burst test results on pipe with simulated corrosion defects was generated
- Outcome of the work led to development of the method now called LPC (Line Pipe Corrosion)
- Method embodied in British Standard BS 7910 and DNV RP-F101

Background

- Advantica currently conducting a project for PRCI and PHMSA aimed at removing known gaps in current assessment methods
- Project #153 addresses assessment of:
 - Corroded high strength pipe (up to grade X100)
 - Corroded low toughness pipe
 - Corroded pipe subject to cyclic pressure loading
 - Corroded pipe subject to combined internal pressure and external loading

Background

- PHMSA sponsored research with Advantica to investigate performance of methods used by the pipeline industry to predict the failure pressure of corroded pipe
- Methods investigated were
 - ASME B31G
 - Modified ASME B31G
 - RSTRENG
 - LPC-1
 - SHELL92
 - PCORRC
- Results of the work described in Advantica Report 6781
 Issue 5.0 "A Review of Methods for Assessing the Remaining Strength of Corroded Pipelines"

Burst Test Database - Sources

- Predicted failure pressures compared against a database of burst tests
- AGA/PRCI Database used to validate ASME B31G and RSTRENG
- Advantica Database
 - Corrosion Group Sponsored Project led by Advantica [completed]
 - Research Projects for pipeline operators includes tests on grade X80 and X100 pipe [ongoing]
- Public Domain
 - ASME IPC/OMAE Proceedings
 - Petrobras/Korean Gas Corporation/University of Waterloo

Burst Test Database - Test Selection ADVA

- Primary focus was to concentrate on tests with isolated, axially oriented defects in pipe subject only to internal pressure loading
- Tests excluded from the database
 - Tests with pressure reversals
 - Tests with closely spaced interacting defects or coincident with seam/girth welds
 - Tests on pipe subject to internal pressure and axial/bending loads
 - Test results suspect, e.g. early tests on grade B pipe conducted by Battelle (contained in the AGA/PRCI Database)
- To summarize the following test results were used
 - Pipe with real and machined metal loss defects
 - Pipe with isolated defects
 - Pipe subjected only to internal pressure loading
 - Vessel and Ring Expansion tests

Test Database - Overview

313 test points listed in Appendix A of the report

	(INDEX)	Source Reference	Grade	D/t	Defect	(L)	$\begin{pmatrix} d \end{pmatrix}$	YS	UTS	YS	(Failure)	Failure Pressure
					Type	\sqrt{Dt}	$\begin{pmatrix} - \\ t \end{pmatrix}$	SMYS	SMTS	UTS	Iviode	(psi)
Unique Number	INDEX 4	PD01004	7/50	70.5	5	\sim	2000	1.400				
for each test	INDEX 1	PRCI-001	X52	78.5	Real	0.738	0.382	1.129	1.153	0.771	_ L \	1628
Tor cacir test	INDEX 2	PRCI-002	X52	78.5	Real	0.665	0.382	1.129	1.153	0.771	L	1620
	INDEX 3	PRef-003	X52	18.5	Real	1.255	0.411	1.129	1.153	0.771	R	1700
Data Source	NDEX 4	PRCI-004	X52	80.0	Real	1.640	0.640	1.227	1.221	0.792	R	1670
and Reference	INDEX 5	PRCI-005	X52	78.9	Real	1.407	0.550	1.131	1.141	0.781	R	1525
	INDEX 6	PRCI-006	В	63.7	Real	0.997	0.719	1.157	1.100	0.614	L	11,00
D: 0 I	INDEX 7	PRCI-007	В	63.7	Real	1.579	0.666	1.157	1.100	0.614	L	1185
Pipe Grade	INDEX 8	PRCI-008	ß	63.7	Real	1.745	0.666	1.157	1.100	0.614	R	1220
(API 5L)	INDEX 9	PRCI-009	В	64.9	Real	0.587	0.705	1.194	1.098	0.634	L	1040
	INDEX 10	PRCI-010	В	64.0	Real	1.417	0.752	1.194	1.098	0.634	L	1165
Pipe Diameter /	MDEX 11	PRCI-011	B	65.8	Real	0.676	0.715	1.194	1.098	0.634	L	1020
Wall Thickness	INDEX 12	PRC/-012	В	65.8	Real	0.760	0.600	1.194	1.098	0.634	L	1215
Wall HillCkiless	INDEX 13	PRCI-013	В	65.8	Real	0.845	0.630	1.194	1.098	0.634	L	1320
	INDEX 14	PRCI-014	В	65.8	Real	0.929	0.715	1.194	1.098	0.634	L	1320
Real or	INDEX 15	PRCI-015	В	63.2	Real	1.242	0.661	1.194	1.098	0.634	L	1335
Machined	INDEX 16	PRCI-016	В	64.9	Real	0.671	0.508	1.194	1.098	0.634	L	1350
	INDEX 17	PRCI-017	В	64.9	Real	1.007	0.649	1.194	1.098	0.634	L	1375
Normaliand	MDEX 18	PRCI-018	В	64.0	Real	1.250	0.640	1.194	1.098	0.634	L	1438
Normalised	INDEX 19	PRCI-019	В	65.8	Real	0.591	0.715	1.194	1.098	0.634	L	1450
Defect Length	INDEX 20	PRCI-020	В	64.0	Real	0.750	0.669	1.194	1.098	0.634	L	1200
	INDEX 21	PRCI-021	В	64.0	Real	0.750	0.779	1.194	1.098	0.634	L	1490
Normalised Defect Depth	INDEX 22	PRCI-022	В	64.0	Real	0.833	0.584	1.194	1.098	0.634	L	1520
	INDEX 23	PRCI-023	В	64.0	Real	0.667	0.501	1.194	1.098	0.634	L	1520
	INDEX 24	PRCI-024	В	64.0	Real	0.750	0.472	1.194	1.098	0.634	L	1520
	INDEX 25	PRCI-025	В	64.0	Real	1.667	0.723	1.194	1.098	0.634	R	1510

Recorded Failure Pressure

Leak or Rupture

Material Properties

Test Database - Split by D/t Ratio

Test Database - Split by Defect Type

Test Database - Overview

- 59 ring expansion tests
- 133 tests conducted on pipe with real corrosion defects
- 180 tests conducted on pipe with machined defects
- 79 recorded as leaks and 161 as ruptures (remainder not documented)

52-inch OD Grade X100 Vessel Test

Fabricated Vessel with Machined Defect Located at Center of Vessel

Hydraulic Ring Expansion Test Set Up

Seam Weld - 12 o'clock Position

Defect – 9 o'clock Position

Test Procedure
Consistent with
ASTM A370

Model Development

- ASME B31G developed by Battelle for PRCI/AGA NG-18 Project (1970's)
- Basic form of the toughness independent failure equation for axially orientated surface breaking defects

ASME B31G

Modified ASME B31G

RSTRENG

Failure Pressure = Minimum Predicted Failure Pressure for all combinations of trapezoids

Defect Assessment Methods Studied ADVANTICA A Germanischer Lloyd Company

Method	Origin of Basic Equation	Flow Stress, $\overset{-}{\sigma}$, Definition	Defect Shape	Folias Factor (M)			
NG-18	AGA NG-18 Toughness Independent Equation	σ _{SMYS} +10,000 psi	Rectangular	$\sqrt{1+0.6275 \left(\frac{L}{\sqrt{Dt}}\right)^2 - 0.003375 \left(\frac{L}{\sqrt{Dt}}\right)^4}$			
ASME B31G	AGA NG-18 Toughness Independent Equation	$1.1\sigma_{ ext{SMYS}}$	Parabolic (shape factor 0.67)	$\sqrt{1+0.8\left(\frac{L}{\sqrt{Dt}}\right)^2} \text{ for } \frac{L}{\sqrt{Dt}} \le 4.479$			
Modified ASME B31G	AGA NG-18 Toughness Independent Equation	$\sigma_{ extsf{SMYS}}$ +10,000 psi	Arbitrary (shape factor 0.85)	$\sqrt{1 + 0.6275 \left(\frac{L}{\sqrt{Dt}}\right)^2 - 0.003375 \left(\frac{L}{\sqrt{Dt}}\right)^4} \text{ for}$ $\frac{L}{\sqrt{Dt}} \le 7.071$ $3.3 + 0.032 \left(\frac{L}{\sqrt{Dt}}\right)^2 \text{ for } \frac{L}{\sqrt{Dt}} > 7.071$			
RSTRENG	AGA NG-18 Toughness Independent Equation	σ _{SMYS} +10,000 psi	Effective area and length (river bottom)	Consistent with Modified ASME B31G			
LPC-1	AGA NG-18 Toughness Independent Equation	<i>σ</i> _{SMTS}	Rectangular	$\sqrt{1+0.31\left(\frac{L}{\sqrt{Dt}}\right)^2}$ for all defect lengths			
SHELL92	AGA NG-18 Toughness $0.9\sigma_{SMTS}$ Independent Equation		Rectangular	$\sqrt{1+0.8} \left(\frac{L}{\sqrt{Dt}}\right)^2$ for all defect lengths			
PCORRC	Battelle New Approach σ_{SMTS}		Rectangular	Incorporated into PCORRC failure equation			

Comparison of Methods

Sensitivity Studies

- A number of studies were conducted to investigate the sensitivity of predicted failure pressure (Pf) to the actual (recorded) burst pressure (PA)
- Sensitivity studies conducted by changing the flow stress for each assessment method

Case 1	Flow stress based on the recommendation given by each assessment method, but using actual material properties.
Case 2	Flow stress based on the recommendation given by each assessment method, using specified minimum material properties.
Case 3	Flow stress modified to equal the actual tensile strength of the pipe.
Case 4	Flow stress modified to equal the specified minimum tensile strength of the pipe.
Case 5	Flow stress modified to equal the mean of the actual yield strength and ultimate tensile strength.
Case 6	Flow stress modified to equal the mean of the specified minimum yield strength and ultimate tensile strength.

Specified minimum material properties used in assessments

Case 1 – ASME B31G

Case 1 – Mod ASME B31G

Case 1 – RSTRENG

Case 1 – SHELL92

Case 1 – LPC-1

Case 1 – PCORRC

Case 1 – ASME B31G

Machined vs. Real Corrosion Defects

Case 1 – Modified ASME B31G

Machined vs. Real Corrosion Defects

Case 1 – RSTRENG

Machined vs. Real Corrosion Defects

Case 2 – ASME B31G

Case 2 – Modified ASME B31G

Case 2 – RSTRENG

Case 2 – SHELL92

Case 2 – LPC-1

Case 2 – PCORRC

Case 2 – ASME B31G

Machined vs. Real Corrosion Defects

Case 2 – Modified ASME B31G

Case 2 – Specified Minimum Material Properties

Statistical Analysis – Case 1 & 2

Assessment	P _A Cas	/ <i>P_f</i> se 1	P_A/P_f Case 2		
Method	Mean	Standard Deviation	Mean	Standard Deviation	
ASME B31G	1.347	0.479	1.550	0.642	
Modified ASME B31G	1.194	0.289	1.340	0.356	
RSTRENG	1.188	0.168	1.322	0.168	
LPC-1	1.205	0.309	1.306	0.326	
PCORRC	1.220	0.301	1.325	0.334	
SHELL92	1.465	0.403	1.592	0.432	

Case 6 – ASME B31G

Case 6 – Modified ASME B31G

Case 6 – RSTRENG

Case 6 – SHELL 92

Case 6 – LPC-1

Case 6 – PCORRC

Case 1 – Non-Conservative Results

Case 1 – Actual Material Properties

Case 2 – Non-Conservative Results

Case 2 – Specified Minimum Material Properties

Case 6 – Non-Conservative Results

Confidence Levels of Predicted Failure Pressuresadvantica

Germanischer Lloyd Company

- Using the results obtained from the assessments, the question was asked "What is the likelihood of predicting a non-conservative failure pressure by more than 5%, 10%, 15% and 20%?"
- Where sufficient test data is available a probability density function (PDF) of the ratio P_A/P_f can be created

Confidence Levels of Predicted Failure Pressuresadvantica

Germanischer Lloyd Company

- Full discussion and results of assessments given in section 7 of 6781 Issue 5
- Example results shown below for Case 1 (Grade X60 and X80/X100)

	ASME B31G		Modified ASME (Case 1)		SHELL92		RSTRENG		
		(Case 1)		(03.00 1)		(Case 1)		(Case 1)	
		d/t<60	d/t>60	d/t<60	d/t>60	d/t<60	d/t>60	d/t<60	d/t>60
X60	No.Tests	24	21	24	21	24	21	23	21
	>20%	0.10%	2.70%	0.00%	11.00%	0.00%	0.10%	0.00%	0.00%
	>15%	0.30%	4.90%	0.30%	19.70%	0.00%	0.30%	0.00%	0.10%
	>10%	1.10%	8.10%	1.10%	30.90%	0.10%	0.90%	0.00%	0.40%
	>5%	2.90%	12.50%	3.40%	43.50%	0.40%	2.00%	0.10%	1.30%
	None	93.60%	82.20%	91.40%	43.90%	98.60%	95.90%	99.40%	96.80%
>2 >1 >1	No.Tests	37	3	37	3	37	3	37	3
	>20%	0.00%	38.70%	0.70%	78.00%	0.00%	0.40%	0.00%	9.30%
	>15%	0.50%	44.50%	4.20%	86.00%	0.00%	1.80%	0.00%	16.20%
	>10%	3.10%	50.10%	15.50%	91.50%	0.00%	5.50%	0.20%	25.30%
	>5%	12.40%	55.40%	36.60%	95.10%	0.00%	12.90%	2.80%	36.00%
	None	68.80%	39.70%	38.40%	2.80%	100.00%	75.30%	82.80%	52.90%

Discussion & Questions

Thank you for your attention